SIRT3 Overexpression Attenuates Palmitate-Induced Pancreatic β-Cell Dysfunction
نویسندگان
چکیده
Abnormally high levels of circulating free fatty acids can lead to pancreatic islet β-cell dysfunction and apoptosis, contributing to β-cell failure in Type 2 diabetes. The NAD+-dependent protein deacetylase Sirtuin-3 (SIRT3) has been implicated in Type 2 diabetes. In this study, we tested whether SIRT3 overexpression affects palmitate-induced β-cell dysfunction in cells of line NIT1, which are derived from mouse pancreatic β-cells. Two different lengths of SIRT3 were overexpressed: full length SIRT3 (SIRT3LF), which was preferentially targeted to mitochondria and partially to the nucleus, and its N-terminal truncated form (SIRT3SF), which was located in the nucleus and cytoplasm. Overexpression of SIRT3LF and SIRT3SF using an adenoviral system alleviated palmitate-induced lipotoxicity such as reduction of cell viability and mitogen-activated protein kinase (MAPK) activation. Chronic exposure to low concentrations of palmitate suppressed glucose-stimulated insulin secretion, but the suppression was effectively reversed by overexpression of SIRT3LF or SIRT3SF. The mRNA levels of the endoplasmic reticulum (ER) stress responsive genes ATF4, GRP94 and FKBP11 were increased by palmitate treatment, but the increases were completely inhibited by SIRT3LF overexpression and less effectively inhibited by SIRT3SF overexpression. This result suggests that overexpression of SIRT3 inhibits induction of ER stress by palmitate. Collectively, we conclude that overexpression of SIRT3 alleviates palmitate-induced β-cell dysfunction.
منابع مشابه
PPARδ Activation Rescues Pancreatic β-Cell Line INS-1E from Palmitate-Induced Endoplasmic Reticulum Stress through Enhanced Fatty Acid Oxidation
One of the key factors responsible for the development of type 2 diabetes is the loss of functional pancreatic β cells. This occurs due to a chronic exposure to a high fatty acid environment. ER stress is caused by an accumulation of irreversible misfold or unfold protein: these trigger the death of functional pancreatic β cells. PPARδ is an orphan nuclear receptor. It plays a pivotal role in r...
متن کاملPar-4/NF-κB Mediates the Apoptosis of Islet β Cells Induced by Glucolipotoxicity
Apoptosis of islet β cells is a primary pathogenic feature of type 2 diabetes, and ER stress and mitochondrial dysfunction play important roles in this process. Previous research has shown that prostate apoptosis response-4 (Par-4)/NF-κB induces cancer cell apoptosis through endoplasmic reticulum (ER) stress and mitochondrial dysfunction. However, the mechanism by which Par-4/NF-κB induces isle...
متن کاملHDLs Protect Pancreatic β-Cells Against ER Stress by Restoring Protein Folding and Trafficking
Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated ...
متن کاملSIRT3 in Neural Stem Cells Attenuates Microglia Activation-Induced Oxidative Stress Injury Through Mitochondrial Pathway
Sirtuin 3 (SIRT3), a mitochondrial protein, is involved in energy metabolism, cell apoptosis and mitochondrial function. However, the role of SIRT3 in neural stem cells (NSCs) remains unknown. In previous studies, we found that microglia activation-induced cytotoxicity negatively regulated survival of NSCs, along with mitochondrial dysfunction. The aim of this study was to investigate the poten...
متن کاملNovel insights into pancreatic β-cell glucolipotoxicity from real-time functional analysis of mitochondrial energy metabolism in INS-1E insulinoma cells.
High circulating glucose and non-esterified (free) fatty acid levels can cause pancreatic β-cell failure. The molecular mechanisms of this β-cell glucolipotoxicity are yet to be established conclusively. In the present paper we report on the involvement of mitochondrial dysfunction in fatty-acid-induced β-cell failure. We have used state-of-the-art extracellular flux technology to functionally ...
متن کامل